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Abstract. A quantum equation of motion method is applied to simulate conduction electron spin-relaxation
and transport in the presence of the spin-orbit interaction and disorder. A spin-relaxation time of 25ps
is calculated for Cu with a realistic low temperature resistivity of 3.2 µΩcm – corresponding to a spin-
diffusion length of about 0.4 µm. Spin-relaxation in a finite nanocrystallite of Cu is also simulated and a
short spin-relaxation time (0.47 ps) is calculated for a crystallite with 7% surface atoms. The spin-relaxation
calculated for bulk Cu is in good agreement with experimental evidence, and the dramatic nanocrystallite
effect observed has important implications for nano-spintronic devices.

PACS. 72.25.Ba Spin polarized transport in metals – 73.63.-b Electronic transport in nanoscale materials
and structures – 72.25.Hg Electrical injection of spin polarized carriers

1 Introduction

Given the subject of this topical issue it is scarcely nec-
essary to expound the interest and applications of spin-
tronics (spin-electronics) and spin transfer. The ability to
pass non-equilibrium spin-polarised currents through in-
homogeneous nanoscale heterostructures offers numerous
possibilities in terms of novel device functionality – giant
magnetoresistive (GMR) hard disk read heads, magnetic
random access memory and SpinFETs (spin field effect
transistors) are just a few important examples [1–3]. Fur-
thermore, the prospect spin-currents present to actively
manipulate the macroscopic magnetisation orientation of
nanomagnets within such devices opens up many more de-
vice possibilities [4]. One can envisage architectures which
would combine the SpinFET paradigm with the ability to
store information in a non-volatile way within a single de-
vice. The advantages this may provide over existing tech-
nologies are numerous and exciting – and this is in part
responsible for the increasing interest in the subject.

The successful application of spintronic devices rely
upon the control and maintained coherence of spin-
currents. Effects which give rise to the decay of spin-
currents by spin-flip scattering are therefore of central
importance. Spin-flip scattering can be caused by impu-
rities (magnetic or not), dislocations, grain-boundaries,
magnons in ferromagnetic materials close to or above the
Curie temperature and also the intrinsic spin-orbit inter-
action of conduction electrons. A detailed discussion of
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spin-flip mechanisms in a range of materials can be found
in [5]. In this article we focus on spin-relaxation and trans-
port in copper as this is an important material of broad
interest. Copper is often used as a spacer layer separat-
ing ferromagnetic components in many spintronic systems,
such as Co/Cu/Co GMR devices. For Cu and other simi-
lar paramagnetic metals the spin-flip mechanism is dom-
inated by the intrinsic spin-orbit interaction of the con-
duction electrons [5] – a fact which is reflected by the
much stronger spin-flip scattering observed in gold com-
pared to copper. In this article we report simulations of the
spin-relaxation of conduction electrons caused by the spin-
orbit interaction using a quantum-mechanical equation-of-
motion method [6]. We also demonstrate the simulation of
spin-injection into Cu using the same formalism which is
an important development as it allows dynamic effects to
be treated.

2 Background

The spin-orbit interaction is a consequence of relativistic
effects which become important close to the nucleus of an
atom. Core electrons, which are fairly well localised, expe-
rience large spin-orbit interactions whereas valence elec-
trons are affected relatively weakly. The Dirac equation in-
cludes relativistic effects and when expanded to first order
contains three terms in addition to the standard kinetic
energy and potential found in the Schrödinger equation
[7]. Two of the terms (the mass-velocity and Darwin cor-
rections) give rise to changes in the eigenenergies, which
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are usually quite small. The other term, the spin-orbit
interaction, is often rewritten in the form, ζ (r)L.S, by
assuming the potential to be spherically symmetric and
the function,

ζ (r) =
�

2

4m2c2

1
r

∂V

∂r
, (1)

can be regarded as a spin-orbit potential and is large where
the potential, V , varies rapidly close to the nucleus. As its
name suggests it is an interaction which can give rise to
non-zero matrix elements between the spin and orbital
components of a wavefunction.

An important consequence of the spin-orbit interac-
tion for periodic systems is that the eigenfunctions are not
Bloch functions containing only one pure spin state. In-
stead, the Bloch states are spinors with components which
contain mixtures of the two pure spin states – for example,

Ψ↑ = [ak| ↑〉 + bk| ↓〉]eik·r , (2)

where ak and bk are two different functions with the peri-
odicity of the lattice [8]. If the spin-orbit strength is weak
the eigenfunctions are formed predominantly of one pure
spin (|bk|2 � |ak|2). The proportion of opposite spin that
is mixed into the states depends upon the strength of the
spin-orbit coupling and the proximity of bands which the
state can couple to at the same wave-vector.

In a periodic system the spin-orbit interaction cannot
cause spin-relaxation, however in the presence of disor-
der it can. Disorder or temperature, or any mechanism
that destroys translational symmetry, gives rise to finite
matrix elements between spin-eigenstates and hence spin-
relaxation. The spin-relaxation rate can be related to the
momentum scattering rate using quite simple assumptions
about the electronic structure and first order perturbation
theory. It can be shown that the spin-relaxation rate is di-
rectly proportional to the resistivity [8,9], ρ,

1
τsf

∝ 1
τ
∝ ρ , (3)

where τsf is the spin-flip scattering time, and τ is the
momentum scattering time. This mechanism for spin-
relaxation is known as the Elliott-Yafet mechanism and
is the most important mechanism for copper and similar
metals.

Fabian and Das Sarma introduced the idea of spin hot-
spots to explain the anomalously high spin-relaxation rate
observed in some metals – Al for instance [10]. If there
are regions of the Fermi surface where bands accidentally
come close together, there is a large increase in the spin-
relaxation rate. This is because perturbation theory pre-
dicts a relaxation rate that goes as,

1
τsf

∝ 1
∆E

, (4)

where ∆E is the separation between the Fermi energy and
a band to which the spin can couple to at the same wave-
vector. Similar effects occur at special symmetry points or
where the Fermi surface crosses the Brillouin zone bound-
ary. These so called spin-hot-spots can have relaxation

rates that are orders of magnitude larger than on the rest
of the Fermi surface. They occupy only a very small frac-
tion of the total Fermi surface, but these small regions
can dominate the overall spin-relaxation as typically the
momentum scattering rate is several thousand times faster
than the spin-relaxation rate in metals. Electrons will sam-
ple most of the Fermi surface before flipping their spin.
The spin-orbit interaction itself modifies the band struc-
ture in such a way as to make spin-hot-spots less impor-
tant for many metals, but such effects can be very impor-
tant in polyvalent metals such as Al.

Spin-relaxation in metals has been probed experimen-
tally using a number of different techniques. The trans-
verse spin-lattice relaxation time (T2) can be extracted
from the line width in conduction electron spin resonance
(CESR) experiments [11]. Spin-relaxation has also been
measured by examining the magneto-optical response of a
system following excitation by a fast magnetic field pulse
[12] and in this case the longitudinal spin-lattice relax-
ation time is probed (T1). A number of transport mea-
surements have also enabled an estimation of the spin-
relaxation time indirectly. This is based upon measuring a
resistance which is dependent upon the spin-polarisation
[13] and invoking ideas about spin-diffusion based upon
solutions of the Boltzmann equation [14].

3 Methods

In order to simulate electronic transport and spin-
relaxation quantum-mechanically an equation-of-motion
(EOM) is used. The electronic structure is represented by
a parameterised tight-binding model [15] which can ac-
count for complex electronic structures, such as transition
metals for example, but allows large systems to be consid-
ered. The method is numerically stable in a variety of sit-
uations and has been described in some detail previously
where GMR in a Co/Cu/Co multilayer was calculated [6],
but here we review the main points.

The EC potential, Φ, is the relevant potential for
electron transport in metals in the absence of magnetic
fields. It consists of the electrostatic potential due to space
charge, φ, together with the chemical potential, µ, due to
variation of electron density. In equilibrium, currents due
to density gradients must balance currents due to internal
electric fields. It follows that in the case of a homoge-
neous system with constant and uniform electric field the
conductivity, σ and the diffusion coefficient, D, must be
related through the Einstein relation [16],

σ = e2g (EF) D, (5)

where g (EF) is the density of states at the Fermi en-
ergy. Chemical potential gradients are therefore equiva-
lent to electrostatic potential gradients in linear response
– despite the fact that the former does not accelerate
electrons. Therefore it is very convenient to neglect the
electrostatic potential and calculate the conductance by
simulating electron diffusion. If a particle current, I, and
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a chemical potential difference, ∆µ, is calculated between
two points, then the conductance can be obtained using,

G =
Ie2

∆µ
. (6)

A tight-binding (TB) basis set is used as the short
range hopping integrals lead to nearly diagonal matri-
ces and hence large systems may be studied easily. The
wavefunction in the TB approximation takes the follow-
ing form,

Ψ(r) =
∑

γ

aγφγ(r), (7)

where aγ is a complex amplitude associated with each or-
bital. In this abbreviated notation the suffix γ denotes an
atomic orbital on a particular site with a given spin eigen-
state, given by the orbital wavefunction φγ(r). The pa-
rameterized TB electronic structure model employed has
hopping matrix elements that have been used as fitting
parameters to agree with more accurate band structure
calculations [15]. A two-center orthogonal representation
containing s-, p-, and d-orbitals is used and yields elec-
tronic structures that are in reasonable agreement with
more numerically demanding methods.

The time dependent Schrödinger equation (TDSE)
can be integrated numerically to simulate the dynam-
ics of electrons passing through the system. Appropriate
boundary conditions must be used in order to set up the
non-equilibrium current and these are discussed in detail
elsewhere [6]. The TB TDSE that must be numerically
integrated takes a particularly simple functional form,

i�
∂

∂t
aγ(t) − aγ(t)Eγ −

∑

γ′
aγ′(t)Vγγ′ = 0, (8)

where Vγγ′ are hopping matrix elements between the var-
ious orbitals which in general can depend on time, and
Eγ are orbital energies. The state of the system at any in-
stant in time is completely specified by the set of complex
amplitudes, aγ(t).

In order to account for spin-relaxation caused by the
spin-orbit interaction of the conduction electrons a simple
prescription is used. Working within the TB framework
one should expect the wavefunction and potential close
to the nucleus should be very similar to that in the free
isolated atom – in contrast to a pseudopotential picture for
example. It should hence be a reasonable approximation
to take spin-orbit parameters as calculated for free-atoms
[8]. The spin-orbit interaction in TB form couples opposite
spins in p, d and higher orbitals according to symmetry
constraints. However opposite spins in s orbitals are not
coupled – it is essential to use a more complex TB model
than one containing just s-states to account for spin-orbit
effects correctly.

Atomic spin-orbit constants have been calculated using
a self-consistent Hartee-Fock (SCHF) method by Herman
and Skillman [17] and we use these parameters in our cal-
culations. The spin-orbit constant, ξl, depends upon the

Fig. 1. Dependence of valance electron spin-orbit interaction
accross the periodic table as calculated by SCHF [17].

the material and on the angular momentum, l, of the or-
bital and is defined in the following way,

ξl =
∫ ∞

0

[
r2fl (r)

]2
ζ (r) r2dr, (9)

where fl (r) is the radial part of the atomic wavefunction.
Although fl (r) has a very different form in the free atom
to in the crystal the short range of ζ (r) (Eq. (1)) ensures
that the atomic approximation remains very reasonable.
In the solid state orbitals which are unoccupied in the
atom can also contribute to the valence band but obtain-
ing corresponding spin-orbit parameters is not straighfor-
ward. The simple approach taken in this work is to use the
spin-orbit parameters for the highest occupied p- and d-
orbitals. This allows us to develop our methodology and to
investigate trends but it should be noted that it may lead
to an overestimation of the spin-orbit interaction strength.
This may be improved upon by performing additional
SCHF calculations. The atomic spin-orbit parameters for
the highest occupied p- and d-orbitals are shown in Fig-
ure 1 for elements across the centre of the periodic table,
which goes approximately as Z

3
2 . The SCHF calculations

were performed for closed shells, but other elements can
be interpolated easily. The form of the matrix elements
between tight-binding d-orbitals have been worked out by
Friedel [18] in terms of the constants, ξ. The p-orbital ma-
trix elements have been deduced in analogous way have
been included into the tight-binding parameterisations.

In order to calculate the spin-relaxation rate we di-
rectly simulate the time evolution of a spin-polarised den-
sity using the EOM method. A region of material is con-
sidered and at time t = 0 a wavefunction is initialised
on the lattice by assigning random phases on all sites,
aγ = eiφγ . Such a wavefunction has all eigenstates occu-
pied with equal probability on the average. This wavefunc-
tion must be augmented so that only eigenstates close to
the Fermi energy are present so that the spin-relaxation
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simulated corresponds to conduction electrons under low
bias conditions. This is achieved using a filtering technique
used commonly in the evaluation of the Kubo formula [19].
The filtered wavefunction is obtained by time-integrating
the initial wavefunction with an appropriate filter func-
tion, F (E, t), in the following way,

ΨF =
∫ ∞

0

F (t)Ψ (t) dt . (10)

The filter function can be selected to pick out a
Lorentzian, Gaussian or indeed any distribution of states,
however in this work a filter function that was proposed
by Hickey [20] is used,

F (t) =
1
π

1√
2W

sin (Wt)
t

eiE0t , (11)

which selects states within an energy window, W , of E0

with a ‘top-hat’ distribution. In practice the filter inte-
gration is of course truncated at a finite time, TF, and
consequently the filter window is modified. In practice we
find that TF > 5000 Ryd−1 produces a well defined win-
dow for a width, W = 0.01 Ryd.

After the filtering procedure the norm of the wave-
function per spin is proportional to the DOS at the Fermi
energy. On the average there is no chemical potential dif-
ference between the two spin channels and the system is
in equilibrium. In order to calculate a spin-relaxation time
one of the spin channels can be excited – simply by multi-
plying the wavefunction amplitudes by a constant factor,
for example multiplying a↑

γ by a factor of 2. This creates a
chemical potential difference between the spin channels
due to the density difference. The state of the system
can be evolved in time using the TDSE (Eq. (8)) and
the spin-polarisation will relax to equilibrium providing
spin-flip mechanisms are present. This type of simulated
relaxation corresponds directly to magneto-optical mea-
surements [12] and probes the longitudinal spin-relaxation
time.

4 Results

4.1 Spin relaxation in Cu

A Cu cube with fcc structure and lattice constant 3.61 Å
is considered which contains 13500 atoms and periodic
boundary conditions are applied in all directions. The on-
site energies are Anderson disordered [21] in order to ac-
count for electron scattering and all orbitals, s, p and d, are
characteried by the same width of the on-site energy distri-
bution, W . A realistic resistivity for copper at low helium
temperatures is 3.2 µΩcm, corresponding to an Anderson
disorder with a full width spread of W = 0.5 eV [22].
Spin-relaxation in copper is simulated using the methods
that have been outlined above with, ζp = −0.0654 Ryd
and ζd = −0.0050 Ryd, used for the TB spin-orbit con-
stants. A filter window of 0.1 eV is used and a filter time
of TF = 5000 Ryd−1. Subsequent to the spin-imbalance

Fig. 2. Spin relaxation in Cu with periodic boundary condi-
tions and different levels of disorder, W . (1 Ryd−1 = 0.484
as).

Table 1. Dependence of the spin-relaxation time on disorder
in Cu. Also shown is the resistivity, ρ, diffusion coefficient, D
and spin diffusion length lsf .

W ρ D τsf lsf

(eV) (µΩcm) 10−3m2s−1 (ps) (nm)

0.0 0 ∞ ∞ ∞
0.5 3.2 6.50 25.0 404

1.0 12.8 1.60 6.0 99

3.0 115 0.18 2.4 21

the EOM is integrated numerically for 50,000 Ryd−1 (or
2.9 ps).

Figure 2 shows the time-evolution of the spin-
polarisation integrated over the entire system as a function
of time for disorder levels ranging from 0 to 3 eV. In the
absence of disorder there is no spin-relaxation and this is
in agreement with the Elliot-Yafet theory. At finite disor-
der the spin-polarised density decays in time. Interestingly
there are fluctuations in the decay which become larger at
increased levels of disorder. The probable cause for this
effect is local variations in the spin-polarised density. The
spin-relaxation times are extracted by fitting the tail of the
decay to an exponential form. Table 1 summarises the fit-
ted spin-relaxation times as a function of disorder together
with appropriate resistivities and estimated spin-diffusion
lengths.

The calculated spin-relaxation time at the realistic
level of disorder, 0.5 eV, is 25 ps. The spin-diffusion
length can be estimated by calculating the diffusion co-
efficient using the Einstein relation. The density of states
at the Fermi energy in the TB copper model, g (EF) =
1.87 × 1047 J−1m−3, together with the resistivity define
a spin-averaged diffusion coefficient, D = 0.0065 m2s−1.
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The spin-diffusion length, lsf , can be estimated using,

lsf = (Dτsf)
1
2 , (12)

which is the r.m.s. distance traveled before a spin-flip. Im-
portantly there is a dual effect of disorder on spin-diffusion
lengths. Increased disorder decreases the diffusion coef-
ficient by increasing the spin-independent scattering of
conduction electrons. It also decreases the spin-relaxation
time in accordance with the Elliott-Yafet theory. For cop-
per the spin-diffusion length is estimated to be 404 nm.
This figure is in very good agreement with experimen-
tal evidence; transport measurements have determined the
spin-diffusion length in Cu to vary between 350 nm and
1 µm between 4.2 K and room temperature [13].

4.2 Spin relaxation in nanocrystallite Cu

Spintronic devices often include components which are
nanoscale in at least one dimension and in some cases
all dimensions. It is important to understand the effect
this can have on spin-relaxation and to that end we con-
sider the same Cu system as discussed above but with
box boundary conditions and with no Anderson disorder.
In this case approximately 7% of the atoms in the system
are surface atoms. Following the same procedure as pre-
viously detailed the spin-relaxation is simulated and Fig-
ure 3 shows the time-evolution of the spin-polarised den-
sity. In this case there is a significant effect corresponding
to a spin-relaxation time of 0.47 ps. Notably the fluctua-
tions observed in the case of Anderson disorder induced
spin-relaxation are much reduced giving further support
to idea that fluctuations are caused by local variations in
spin-density. Spin-relaxation in this system occurs because
of the translational symmetry breaking of the surface and
for 7% surface atoms corresponds to a spin diffusion length
that is much reduced compared the bulk, 55 nm compared
to 404nm for bulk Cu with realistic resistivity.

4.3 Spin injection simulation

As an indication of how spin-relaxation effects may be
incorporated into the EOM transport simulation a sim-
ple system is presented. A small crystal of copper is con-
sidered with periodic boundary conditions in the trans-
verse x and y directions and current flow is along the
z-direction (which is the (001) direction in the crystal).
The system contains a total of 1960 atoms, with each
transverse plane containing 98 atoms and with 20 planes
in the current direction (corresponding to about 34 Å).
A spin-polarised current is injected into system by using
spin-dependent source magnitudes on the left boundary.
The spin-orbit constants for this system are taken to be
quite large (ξp = 5 eV and ξd = 1 eV) to cause signif-
icant spin-relaxation over the quite small length consid-
ered. Different levels of Anderson disorder are simulated
corresponding to different values of W/V . Figure 4 shows

Fig. 3. Spin-relaxation in a finite nanocrystallite of Cu with
7% surface atoms.

the norm of the wavefunction for each spin channel aver-
aged over the transverse planes in steady state.

At zero disorder (ballistic transport) there is a differ-
ence in the spin density which remains on the average
constant throughout the system. As the disorder is in-
creased two effects are apparent. The slope of the curves
increases representing the increased resistance, and the
two curves approach one another due to spin-relaxation.
At the highest level of disorder the spin-diffusion length is
so small that the spin-polarisation of the injected current
disappears almost immediately. This very simple demon-
stration shows how the effects of spin-relaxation can be
incorporated into transport calculations and is an impor-
tant area for future work.

5 Conclusions

Quantum simulations of electronic transport and spin-
relaxation in the presence of the spin-orbit interaction
have been presented. The calculation of spin-relaxation
times is very important from the point of view of spin-
tronic device applications. It provides independent evi-
dence separate from optical and transport measurements
and could potentially suggest new materials which may
be useful for maintaining spin coherence within devices.
The simulated spin-relaxation in Cu is in reasonable agree-
ment with experiments indicating that the approach based
upon a TB parameterisation is justified. The simulation
of spin-relaxation in a finite crystal has revealed a very
significant effect due to the surface, and this is an is-
sue to be considered for future nano-spintronic devices.
The incorporation of the spin-orbit interaction and the
effects of spin-relaxation into a quantum EOM method
for electronic transport has many advantages. The abil-
ity to include dynamic effects is vital for simulations of
spin-current driven magnetisation reversal for instance.
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Fig. 4. Injection of a spin-polarised current into Cu with strong spin-orbit coupling(ξp = 5 eV and ξd = 1 eV). As disorder in
increased (from left to right) the spin-diffusion length is reduced.

An electronic structure based calculation such as the
one presented here has the advantage that ferromagnetic
materials may be studied without additional complexity,
whereas transport measurements of spin-relaxation in fer-
romagnetic materials are more problematic. One can ex-
pect more complex and subtle behaviour in materials such
as cobalt for example. The presence of the d-band just be-
low the Fermi energy may cause sensitive dependence on
disorder. As disorder is increased it may bring d-levels in
the majority band closer to the Fermi energy. This could
allow d-levels in the minority band to couple more strongly
to the majority band through the spin-orbit interaction,
and this could have a dramatic effect on spin-relaxation.
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